
All	content	is	the	property	and	proprietary	interest	of	matrix	IT;	 The	removal	of	any	proprietary	notices,	including	attribution	information,	is	strictly	prohibited.

How	to	build	a	multi	PB	Data	Hub	in	
less	than	6	months Oz	Levi,	CTO,	

matrix DnA

Introducing

About Me
- CTO & Chief Architect @ MatrixBI

- Databases & VLDB’s since 2006

- Big Data, Cloud & ML since 2012
- MPP, HADOOP, NoSQL
- Vertica since 2013

IntroducingStart	from	the	facts

No# 1 - SQL

2nd Most-
Common	*

* Stack overflow 2017

No# 1 - SQL

Over	130	
Databases

• Vertica ranked at No# 26 overall and #15 in Relational DBMS ranking
• 6 out of the top 10 are SQL Based!

Statistics from db-engines.com

No# 1 - SQL

47	Years	
old

* Stack overflow 2017

It is the oldest programming language in use
today!!

1970 - "A Relational Model of Data for Large
Shared Data Banks”

Followed By:
• C (1972)
• C++ (1983)

IntroducingLIKE	IT	OR	NOT
SQL	IS	HERE	TO	STAY!

Introducing90%	of	the	data	in	the	world	
was	created	in	the	last	2	years

(Exceeding	moors	law)

No# 2 - Data

IntroducingWHY	ARE	WE	
USING	1990’S

MTHODOLIGIES?

Introducing
Users	want	more	data!

Faster	and	closer	to	source	format!

No# 3 - Usage

IntroducingLONG	DESIGN	AND	DEVELOPMENT	
PROCCESSESES	ARE	JUST	NOT	

RELEVANT	ANYMORE

From	0	to	Big	Data	(In	three	steps)

How	to	build	a	multi	PB
DWH	in	less	then	6	months?

Design

Execute

Evolve

Step	1 Design

Define	Objectives

What	roles	should	the	
system	fill	(Data	hub,	
Searching,	Reporting	
etc.)

Understand	Context

How	does	the	system	
interact	with	existing	
platforms?
What	sources,	
volumes	and	
integration	
requirements	exists?

Determine	Platform

Understand	the	types	
and	volume	of	data	
your	Big	Data	
Application
Hadoop	is	not	always	
the	default	selection

Step	2 Execute

Start	SMALL;	graduate	slowly

Avoid	boiling	the	
ocean!	
Example:	Start	with	
offline	&	Batch	and	
mature	in	Real	time	
stream	processing

Collect	Data

Design	generic	data	
collection	modules	
that	allows	
schedule,	continues	
and	event	driven	
data	collection

Close	the	loop

Feed	data	sets	that	
are	processed	by	
system	to	users	and	
sources!

Evolve

Machine	Learning

Use	behavioral	
analysis	and	un-
supervised	models	
to	find	the	gold	
nuggets

Evaluate	Real	Time	models

Provide	real-time	
access	to	the	
models	developed	
In	Example:	Asses	
user	Life	Time	Value	
upon	signup

Continuously	Refine

Evaluate	and	
measure	result	
while	refining	the	
process

Step	3

Introducing

Technology

Design

Evolution vs. Revolution

COMMON	ARCHITECTRE	PATTERNS

• Distributed	processing
systems

• File	/	Object	store
• Consistency	model	is

BASE
• New	languages,

usually	JAVA	interface

• Massively	Parallel
Processing	DBMSs

• Mostly	Relational
• Consistency	model	is

ACID
• SQL	Interface

* Some	use	Special	Hardware
BASE
Basically	Available
Soft	State	system
With	Eventual	consistency

*See	brewers	CAP	theorem

It’s the consistency stupid!

ACID:
• Strong consistency.
• Less availability.
• Pessimistic concurrency.
• Complex.

BASE:
• Availability is the most important thing. Willing to sacrifice for this (CAP).
• Weaker consistency (Eventual).
• Best effort.
• Simple and fast.
• Optimistic.

Fully ACID compliant

Introducing
Hadoop
is not the
default
answer

Introducing

But I have really Big Data

Large Scale DW implementation

Largest	(public)	production	Vertica	deployments

• 300+	Nodes	– 6+	Petabyte

• Facebook	– More	than	2	Petabyte

• Zynga	– 3.2	Petabyte

Introducing

Data Warehouse V2.0
The Data Vault

Design

Design Principles

Old	Challenges,	New	Consideration
DW’s Still deliver

Data integration of multiple systems

Accuracy, completeness and auditability

Reporting

Clean Data

A “single version of the truth”

The problem space now contains

Real Time Data

Shorter time to access / Real ‘Self Service’

Larger amounts of data

Many more systems

Design Principles

A	modern,	best	in	class	data	warehouse:
• Is	designed	for	scalability,	ideally	using	MPP &	Cloud	architecture
• Uses	a	bus-based,	lambda	architecture	for	Data	Loading
• Has	a	federated	data	model	for	structured	and	unstructured	data
• Uses	an	agile	data	model	like	Data	Vault	*
• Is	built	using	code	automation
• Processes	data	using	ELT,	not	ETL

What	is	best	practice	today?	

Data Vault Model

The Data Vault Model is a detail oriented, historical tracking
and uniquely linked set of normalized tables that support one
or more functional areas of business. It is a hybrid approach
encompassing the best of breed between 3rd normal form (3NF)
and star schema.

The design is flexible, scalable, consistent and adaptable to
the needs of the enterprise

What	is	the	Data	Vault	model?

Introducing

Data Architecture

Execute

Columns Store tradeoffs

Weakness Solution
No	PK	/	FK	integrity	enforced	on	
write

Design	using	calculated	keys	(e.g.	
hashes)

Slow	on	DELETE, UPDATE Build	ETLs	that	use	COPY	/	
TRUNCATE

Slow single	record	INSERT	&	SELECT Use	specific	key/Value OLTP

Optimized	for	limited	concurrency	
but	big	queries;	only	a	few	users	can	
use	at	a	time	

Optimize	data	structures	for	
common	queries	and	leverage	big,	
slow	disks	to	create	denormalized
tables	

Data Vault Model

Methodology

Architecture

Model

• Consistent
• Repeatable
• Pattern	Based

• Multi-Tier	support
• Supports	C-Store	&
NoSQL

• Scalable

• Flexible
• Scalable
• Hub	&	Spoke

Automation

Evolution

Scalability

Data Vault Model

Data	model	designed	for	simple	automated	loading	of	data	with	
repetitive	entity	based	design	built	on	the	Hub	&	Spoke	paradigm

Data	Vault	2.0

HUB

Link

Satellite

ReferenceA	table	with	Keys	and	static	entity	data

A	table	containing	entity	data	and	the	
key	from	the	Hub

Essentially	an	M2M	table	designed	to	link	Hubs	

A	Static	ENUM	table

Data Vault Model

H_CUST

S_CUST_CRM S_CUST_EVNT S_CUST_MBL

L_CUST_ACCH_ACC

H_ACC_MBL

Star	Schema

Data	Vault

Real World Example MPP – 3 Node HP Vertica database

Time:	First	fetch	(10	rows):	153.675	ms.

All	rows	formatted:	153.733	ms
somedb=>	select	count(*)	from	h_events;
count

247,915,500,000
(1	row)

SELECT /* +label(c4q0022) */ computer_id,dt , count(distinct process_name) process_count
From h_events
WHERE dt = 2017-06-07 and tm between 14:41:30 and 21:01:45
Group by computer_id, dt
ORDER BY process_count DESC
limit 10;

Time: First fetch (10 rows): 16715.003 ms.
All rows formatted: 16715.060 ms

This is what we have after the where to the group by and distinct. - 18.3B rows out of 248B

Introducing

Data Load

Execute

Bus based architecture
Lambda Architecture

ETL vs ELT

Transform	is	a	separate	ETL	Server
• Proprietary	Engine
• Poor	Performance
• High	Costs

Transform	in	Database
• Leverage	distributed	resources
• Efficient
• High	Performance

Benefits
• Optimal	Performance	&	Scalability
• Easier	to	Manage	&	Lower	Cost

E

T
E L

T L

T L

T L

T L

T L

T L

Loading Data to the Vault

Metadata

Staging
Data	Vault

Business	Data	
Marts

ML	Sandboxes

1. Staging	area	– Create	Hashed	Keys,	Re-Use	GKs	(Can
be	a	different	DB	like	PGSQL,	MYSQL	etc.)	or	a	Vertica
FlexZone table.

2. Metadata – A	reference	area	containing	source	MD,
configuration,	Management	Tables	etc.

3. Data	Vault	– The	main	Vault	structure
4. Business	DMs	– Aggregation	and	pre	processed	tables

that	hold	business	data.
5. ML	Sandboxes	– An	area	to	create	feature	vectors,

training	data	sets	etc.

Some	implementations	adds	ODS	&	OPS	Marts	with	
constant	keys	generated	in	the	staging	and	MD	Area.

Vertica	
DW

NoSQL	
ODS

Staging	
&	MD

Loading Data to the Vault

And More...

Spark

Spark	is	a	General	Purpose	distributed
data	processing framework

Core	engine	with	libraries	for	streaming,	SQL	
Machine	learning,	Graph	processing	and	more...

Spark	
SQL GraphX

MLLib
Machine	
Learning

SparkR
(More...)	
Machine	
learning

Spark	
Streaming
Micro-Batch

SPARK	CORE

Introducing

Introducing

Spark-Vertica connector in a nutshell

• 2 Way connector
• Locality aware partitions
• Locality aware query

• Query pruning
• Computation push-down

• Filters
• Projections – Count(*)
• Joins
• Aggregations

Machine Learning
Graph Processing
Distributed Data Processing
Streaming / Micro-batching

Geospatial analytics
Sentiment analysis
Sessionization of
event streams
Time series pattern
matching
(Many more)...

Additional Methodologies

Multi-Temperature	Data	Management
Hierarchical	Storage

Polymorphic	File	System
Multi	data	base	usage

Late	Binding
With	Data	access	capabilities	that	go	beyond	traditional	

Cost	effectiveness	over	
extremely	large	data	

volumes

Native	Storage	in	a	form	
most	suitable	for	processing

Usable	by	data	scientists	
who	does	not	need	to	be	a	

computer	scientist

1

2

3

Multi temperature data Tiering approach

20%	of	EDW	data	is	HOT
• Used	frequently
• Recent	Data

80%	of	the	data	is	warm	or	cold
• Accessed	infrequently
• History	– months,	years
• High	granularity

Vertica	Based
Data	Vault

Hadoop	Based
Data	Vault

Spark
Processing	

Tier

Introducing

Data Load Automation
Machine Learning
More...

Evolve

Introducin

Success Factors

Success Factors

Start Quick
Try implementing a cloud first
approach where Development
is agile and fast.

Set up an On-Prem
environment while you
develop...

Success Factors

Think about data for the long term
data project should be started with consideration Every

applications.in future reusabilityfor the data’s

By understanding that upcoming and future
you can , unknowndata needs are often

prepare and utilize data accordingly.

From fixed budget to Fast Iterations and Feedback loops

Introducing

Use Case

Site 27

Site 26

Site 25
Site 24

Site 23

Site 16
Site 15

Site 14
Site 22

Site 21

Site 19

Site 18
Site 17

Site 20

Site 10
Site 11

Site 06 Site 09
Site 07 Site 13

Site 12

Site 08

Site 02

Site 01
Site 03

Site 04

Site 05

Use	case	– Command	and	Control	Intelligence

Process	data	from	many	different	
sites	and	systems	geographically	
remote

Support	loading	and	Processing	of	
large	amounts	of	structured	data

Provide	scalable	infrastructure	for	
future	growth

Provide	fast	query	response	times	
for	complicated	reports

Provide	easy	and	secure	access	for	
users	located	at	many	sites

State	of	the	art	Columnar	Datawarehouse	design	

Infinite	we	achieve	Nothing	architecture	-Using	Shared
Scalability

Big	Data	&	Modular	Architecture

Data	Source	Agnostic	– Open	Architecture

Rich	Web	Architecture	- Zero	Footprint

Challenges	and	Solutions

ML

Use case – High End

J2EE JMSServlet

Big	Data

Data	Integration

Configuration	and	Metadata

Analytics	&	UI GIS

Future Phases

Data flow

Sites

Collection

Discoverer

Dispatcher

SQL Repository

MSB
Repository

Workflow
Manager

AdminModule
DB

GIS Vertica 1 Vertica 2 Vertica N

Tomcat 7.0

Talend Job

Arc GIS Server

MSTR
Repository

MSB Front End

FenceBufferBuilder

IntrusionsDetector

MeetingPointDetector

MSB	Custom	Engines

Map
Layers

Administrator

Pending	/	Scheduled	job	plans
Configuration	and	Logggng

AdminModule

Instructions

Report	Finding

MSB	Web	App

Microstrategy
Intelligence

server

MSTR Web
Front end

Microstragey

End User

Proprietary Software Component

Component based on 3rd Party SW

Invoke / Control / Activate

Data Flow

Get / Set Configuration and Metadata

Database Component

Legend

1. An	event	created	or	target	is
detected	on	op	system

2. Wisdom	publishes	the	event
to	the	InterfaceDB according
to	a	pre-set	format

1. Discoverer	poll	for	the	change	and	inserts	a	Queue	item
2. Dispatcher	starts	Workflow(s)	in	multi	sessions

I. Process	and	Load	data	into	Vertica
II. Perform	GEO	spatial	analysisI

II
Increment	Data	is	ready

Capacity:
• Process 35-60M

Events per hour
• End to End data

availability time 1-3
minutes from event
creation to analysis

Data flow

Use	case SQL	(2014) Oracle	(12c) Vertica	(7.1) Improvement	
(from	Oracle)

1 52	Sec 9	Seconds 109	milliseconds 99%

2 6	Sec 3-6	Seconds 94 milliseconds 97%-98%

3 5:30	Min	per	week 54	Sec	Per	week 13	Sec	Per	week	(29.5M Records) 76%

4 Over	13	Mins 1:40	to	3:00	Min 16	Sec 84%-89%

5 10	Seconds 13	seconds 300	milliseconds 98%

Geospatial performance test

3 Node cluster and 4TB of Geospatial data

Components – DMS Architecture

ETL	Instance	1

Scheduler

Workflow	
n

Workflow	
2

Workflow	
1……. Vertica

Meta	Data

ETL	Instance	2 ETL	Instance	N

Access	Layer

Dispatcher

Discoverer

API Reports

Sources

MSB	- (Distributed)	Data	Movement	Services
• Micro	batch	data	loading	framework
• Guaranteed	delivery!

• Retry	and	self	healing
• High	Availability

• Multi	server	architecture

• Flexibility	(Can	run	Talend	/	Java	/	Python
other	executables)

• Platform	independent!	(Linux	\ Windows)

Thank You!
 ozle@matrixdna.ai

