®S.c
©°¢c°
matrix DnA%g®

How to build a multi PB Data Hub in

less than 6 months

matrix DnA

Gmail

Google Search I'm Feeling Lucky

Google.co.il offered in: nmay sl

.‘Q‘.
matrix Dl

Start from the facts

No# 1 - SQL

.°°°°
matrix Dl

JavaScript

61.9%

SQL

50.8%

Java

C#

Python
PHP

C++

C
TypeScript

Ruby

39.3%

33.8%

31.7%

27.9%

22.1%

18.9%

9.4%

9.0%

* Stack overflow 2017

No# 1 - SQL

334 systems in ranking, October 2017

Rank Score
Oct Sep oct DBMS Database Model Oct Sep Oct
2017 2017 2016 2017 2017 2016
Ove r 1 3 O 1. L. 1. Oracle &2 Relational DBMS 1348.80 -10.29 -68.30
2. 2. 2. MySQLE3 Relational DBMS 1298.83 -13.78 -63.82
3- 3. 3. Microsoft SQL Server E3 Relational DBMS 1210.32 -2.23 -3.86
D a t a b a S e S 4. 4. #A5. PostgreSQL E3 Relational DBMS 373.27 +0.91 +54.58
5. 5. 4. MongoDB E3 Document store 329.40 -3.33 +10.60
6. 6. 6. DB2Ed Relational DBMS 194,59 -3.75 +14.03
7. 7. A 8. Microsoft Access Relational DBMS 129.45 +0.64 +4.78
8. 8. 7. Cassandra k2 Wide column store 124.79 -1.41 -10.27
9. 9. 9. Redis k3 Key-value store 122.05 +1.65 +12.51
10. 10. #11. Elasticsearch E3 Search engine 120.23 +0.23 +21.12
11 11 1N cNIl i+~ W DAlakrian~l ADMC 111 0O n nc -

6 out of the top 10 are SQL Based!
Vertica ranked at No# 26 overall and #15 in Relational DBMS ranking

°°e, o .
matrix DnA S Statistics from db-engines.com

No# 1 - SQL

It is the oldest programming language in use
AYAEERN today!

old

1970 - "A Relational Model of Data for Large
Shared Data Banks”

Followed By:
« C(1972)
« C++(1983)

o°§°°
matrix Dnd%¢ * Stack overflow 2017

LIKE IT OR NOT
SQL IS HERE TO STAY!

No# 2 - Data

90% of the data in the world
was created in the last 2 years

(Exceeding moors law)

WHY ARE WE
USING 1990°S
MTHODOLIGIES?

No# 3 - Usage

Users want more datal
Faster and closer to source format!

LONG DESIGN AND DEVELOPMENT
PROCCESSESES ARE JUST NOT
RELEVANT ANYMORE

How to build a multi PB
DWH in less then 6 months?

ANE

00000

® ¢°
© © 10010
matrixDn1%* o010

.°°°0
matrix Dl

Step 1

Define Objectives

What roles should the
system fill (Data hub,
Searching, Reporting
etc.)

Understand Context

How does the system
interact with existing
platforms?

What sources,
volumes and
integration
requirements exists?

Determine Platform

Understand the types
and volume of data
your Big Data
Application

Hadoop is not always
the default selection

01100
10010
00101

Step 2

Execute

Start SMALL; graduate slowly

Avoid boiling the
ocean!

Example: Start with
offline & Batch and
mature in Real time
stream processing

Collect Data

Design generic data
collection modules
that allows
schedule, continues
and event driven
data collection

.°°°°
matrix Dl

Close the loop

Feed data sets that
are processed by
system to users and
sources!

01100
10010
00101

Step 3

Machine Learning

Use behavioral
analysis and un-
supervised models
to find the gold
nuggets

Evolve

Evaluate Real Time models

.°°°°
matrix Dl

Provide real-time
access to the
models developed
In Example: Asses
user Life Time Value
upon signup

Continuously Refine

Evaluate and
measure result
while refining the
process

01100
10010
00101

Technology

o°:°.
matrix Dl

A58

Evolution vs. Revolution

.°°°°
matrix Dl

Evolution ‘ Revolution

Massively Parallel Distributed processing
Processing DBMSs systems

Mostly Relational File / Object store
Consistency model is Consistency model is
ACID BASE

SQL Interface New languages,

usually JAVA interface

* Some use Special Hardware

COMMON ARCHITECTRE PATTERNS

BASE

Basically Available

Soft State system

With Eventual consistency

*See brewers CAP theorem

It’s the consistency stupid!

ACID:

« Strong consistency. V:RTIm
* Less availability. Fully ACID compliant
* Pessimistic concurrency.

« Complex.

BASE:

 Avalilability is the most important thing. Willing to sacrifice for this (CAP).
« Weaker consistency (Eventual).
 Best effort.

« Simple and fast.

* Optimistic.

.°°°°
matrix Dl

Hadoop
IS not the
default

dnswer

But | have really Big Data

Large Scale DW implementation

Largest (public) production Vertica deployments

* 300+ Nodes — 6+ Petabyte
* Facebook — More than 2 Petabyte n

* Zynga — 3.2 Petabyte -
,/iﬁ;‘\w
matrix Do @‘ ®_~

Data Warehouse V2.0

The Data Vault

Design Principles

Old Challenges, New Consideration

DW’s Still deliver The problem space now contains

Data integration of multiple systems Real Time Data

Accuracy, completeness and auditability Shorter time to access / Real ‘Self Service’
Reporting Larger amounts of data

Clean Data Many more systems

A “single version of the truth”

.°g°°
matrix D€

Design Principles

What is best practice today?

A modern, best in class data warehouse:

* |s designed for scalability, ideally using MPP & Cloud architecture
e Uses a bus-based, lambda architecture for Data Loading

 Has a federated data model for structured and unstructured data
* Uses an agile data model like Data Vault *

* |s built using code automation

* Processes data using ELT, not ETL

.°°°°
matrix Dl €g®

Data Vault Model

What is the Data Vault model?

The Data Vault Model is a detail oriented, historical tracking
and uniquely linked set of normalized tables that support one
or more functional areas of business. It is a hybrid approach
encompassing the best of breed between 3rd normal form (3NF)
and star schema.

The design is flexible, scalable, consistent and adaptable to
the needs of the enterprise

.°°°°
matrix Dl €g®

o":%
atrix Dl %®

Data Architecture

Columns Store tradeoffs

No PK / FK integrity enforced on
write

Slow on DELETE, UPDATE

some O
5 ited concurrency

but big queries; only a few users can
use at a time

.°°°°
matrix Dl

Design using calculated keys (e.g.
hashes)

Build ETLs that use COPY /
TRUNCATE

Use specific key/Value OLTP

Optimize data structures for
common gqueries and leverage big,
slow disks to create denormalized
tables

Data Vault Model

e Consistent

Methodology - Repeatable Automation

e Pattern Based

e Multi-Tier support
e Supports C-Store &

Architecture " sa Evolution
e Scalable
e Flexible

Model * Scalable Scalability

e Hub & Spoke

.°°°°
matrix Dl ®®

Data Vault Model

Data Vault 2.0

Data model designed for simple automated loading of data with
repetitive entity based design built on the Hub & Spoke paradigm

HUB A table with Keys and static entity data Refe g=glel=l | A Static ENUM table

S t “t A table containing entity data and the
atellite key from the Hub

Lin k Essentially an M2M table designed to link Hubs

.°°°°
matrix Dl

Data Vault Model

H_ACC_MBL

.°°°°
matrix Dl

S_CUST_CRM

DIM

DIM

DIM

S_CUST_EVNT

S_CUST_MBL

Data Vault

DIM

DIM

Star Schema

Real World Example MPP - 3 Node HP Vertica database

Time: First fetch (10 rows): 153.675 ms.

All rows formatted: 153.733 ms
somedb=> select count(*) from h_events;
count

247,915,500,000
(1 row)

SELECT /* +label(c4q0022) */ computer_id,dt , count(distinct process _name) process_count
From h_events

WHERE dt = 2017-06-07 and tm between 14:41:30 and 21:01:45

Group by computer _id, dt

ORDER BY process_count DESC

limit 10;

Time: First fetch (10 rows): 16715.003 ms.
All rows formatted: 16715.060 ms

This is what we have after the where to the group by and distinct. - 18.3B rows out of 248B

.°°°°
matrix D€

°0
.°°°°
matrix Dni®g®

Data Load

Bus based architecture

Lambda Architecture

SPEED LAYER

NEW DATA ’
RECENT DATA :\

L

SERVING LAYER

S
2 BATCH LAYER RATCH VIEW)

------------) 4 C BATCH VIEW>

ALL DATA

.°°°°
matrix Dl

ETL vs ELT

® ¢°%
matrix Dl ®®

Transform is a separate ETL Server
* Proprietary Engine
 Poor Performance
 High Costs

Transform in Database
* Leverage distributed resources
e Efficient
 High Performance
Benefits
 Optimal Performance & Scalability
* Easier to Manage & Lower Cost

Loading Data to the Vault
Business Data
Staging Marts
Data Vault
ML Sandboxes
Metadata

Vertica

DW

.°°°°
matrix Dl

1. Staging area — Create Hashed Keys, Re-Use GKs (Can
be a different DB like PGSQL, MYSQL etc.) or a Vertica
FlexZone table.

2. Metadata — A reference area containing source MD,
configuration, Management Tables etc.

3. Data Vault — The main Vault structure

4. Business DMs — Aggregation and pre processed tables
that hold business data.

5. ML Sandboxes — An area to create feature vectors,
training data sets etc.

Some implementations adds ODS & OPS Marts with
constant keys generated in the staging and MD Area.

Loading Data to the Vault

sk

And More...

Spark is a General Purpose distributed SOA !K!

data processing framework

Core engine with libraries for streaming, SQL
Machine learning, Graph processing and more...

Spark MmLLib | SParkR 1 spark
GraphX | wachine (More..) ¥ Streaming
SQL Learnin Viachine icro-
g [Micro-Batch

SPARK CORE

©

Spark

Vertica

.°°°°
matrix Dl

—

¥yl IR¥E| IS

Vertica execution plan node
[Spark tasks

——3 Data flow

() Spark execution stage that runs VerticaRDD or DataFrame

Spark tasks containing
VerticaRDD or DataFrame
partitions fetch data from
Vertica through JDBC
connections.

Spark-Vertica connector in a nutsheli

» 2 Way connector ‘S'pc:tr‘ll(\Z VERTICA

o Loca"ty aware pa rtitions Machine Learning Geospatial analytics
] Graph Processing Sentiment analysis
° LOcaI |ty aware q uery Distributed Data Processing Sessionization of
] Streaming / Micro-batching event streams
° Quel’y pruning Time series pattern
] matching
« Computation push-down (Many more)...
* Filters
* Projections — Count(*)
* Joins

* Aggregations

.°°°°
matrix Dl

Additional Methodologies

@ °°°
matrix Dl

Multi-Temperature Data Management

Hierarchical Storage

Polymorphic File System

Multi data base usage

Late Binding

With Data access capabilities that go beyond traditional

Cost effectiveness over
extremely large data
volumes

Native Storage in a form
most suitable for processing

Usable by data scientists
who does not need to be a
computer scientist

Multi temperature data Tiering approach

20% of EDW data is HOT
 Used frequently
e Recent Data

80% of the data is warm or cold
* Accessed infrequently

* History — months, years

* High granularity

N
©°¢°
matrix Dni®g®

Vertica Based
Data Vault

Spark
Processing
Tier

Hadoop Based

Data Vault

Evolve

Data Load Automation
Machine Learning
More...

Success Factors

Success Factors

Start Quick

Try implementing a cloud first
approach where Developmen o, TRDCLIR

Vertica is a blazingly fast, advanced SQL analytics database with essential enterprise features - built in machine learning,
predictive analytics, fine-tuning capabilities, integrated Bl/reporting, data ingestion and more. Bring your own license (BYOL) to
this Vertica offering for unparalleled MPP performance across Exabytes of data. Vertica for AWS offers the flexibility to start small

L} L]
I S a I | e a I I d a S t and grow as your business grows as well as access advanced analytics functionality that no other cloud provider offers. Leverage
[] Vertica Flex tables to load and transform your structured and unstructured... Read more

Customer Rating ##### (v (1 Customer Review) You will have an opportunity to
review your order before launching or

being charged.
Latest Version 9.0 (Other available versions)

Operating System Linux/Unix, Red Hat Enterprise Linux 7.3 Pricing Information

Use the dropdown selectors to see software pricing

Delivery Methods Single AMI

information for the chosen AWS region, and to see estimated
- 64-bit Amazon Machine Image (AMI) (Learn more) infrastructure pricing for the chosen CloudFormation
Single box deployment of the product template.

Quick Start: 1 node, 1 Management Console

. - CloudFormation Template (View) For Region
Quickly deploy 1 node Vertica with optional sample Asia Pacific (Mumbai) s
report and demo data
Custom: 3 node cluster, 1 Management Console Delivery Methods

CloudFormation Template (View)

ingle AM| B
Customize 3 node Vertica deployment based on instance Single AM
[I I] types, and storage type and size.
Bring Your Own License (BYOL) W\TZIELICR{]g

customers with current licenses purchased via other
channels.

Quick Start: 3 node cluster, 1 Management Console
CloudFormation Template (View)
Quickly deploy 3 node Vertica with optional sample

report and demo data B

.°°°°
matrix Dl ®®

Success Factors

Think about data for the long term

Every data project should be started with consideration
for the data’s reusability in future applications.

By understanding that upcoming and future
data needs are often unknown, you can
prepare and utilize data accordingly.

® °°°
matrix Dl ®®

From fixed budget to Fast Iterations and Feedback loops

BUILD

your product Q]—

.
‘2,
E
Z
A

LEARN . MEASURE

& revise ideas i the outcome
EVALUATE

.°°°°
matrix Dl

Use Case

Use case — Command and Control Intelligence

State

ls ite 20:, 3 =

S Sﬂe 157 . 24;;iﬂn : fi“aii
Site 16 f.tem Site2s |

.

Site 27

Site 18
) irSi,t,?JQ;; .

01100

@%c°
% 10010
matrix Dl ®g® o010’

Challenges and Solutions o

Provide fast query response times

for complicated reports State of the art Columnar Datawarehouse design

Provide scalable infrastructure for Using Shared-Nothing architecture we achieve Infinite
future growth Scalability

Support loading and Processing of
large amounts of structured data

Big Data & Modular Architecture

Process data from many different

sites and systems geographically Data Source Agnostic — Open Architecture
remote

Provide easy and secure access for
users located at many sites

Rich Web Architecture - Zero Footprint

SN 01100
() 10010
©
matrix Dl ®g® 00101

Use case — High End

4 Analytics & Ul N/ GIS I
2 >
2 Dncuar | @esr
S '\ Y
/W\ / Big Data \ 4 Configuration and Metadata R
>
|5 PosioreSOL
. | VERTIC\ - o
55 ata Integration
= 5 Servlet J?E(E JMS)
(.é? (l [a]s) = Ee?d!gﬂm
k Future Phaseg _ Java -/

{

@ °°°
matrix Dn1®

Data flow

Collecton .
ey \ 1 An event created or target is
Een?lng /tS.chedudkT_d job plans _.l’:_w_or,gow_ 1—>| , Discoverer | | Sites detected on op system
onfiguration and Logggng - — | e . .
——D | — Lo > oispatcher E 2. Wisdom publishes the event
[z — to the InterfaceDB according
==Y==q _
| I — | Tatend Job (I to a pre-set format

Repository

I
f
Vo ’
C a p a C I ty : wse [€ :_I 1. Discoverer poll for the change and inserts a Queue item
— I/ 2. Dispatcher starts Workflow(s) in multi sessions
° - g ; | l. Process and Load data into Vertica
P rocess 35 60 M adminModule [€ [i Il. Perform GEO spatial analysis

DB

Events per hour —
* End to End data

1

v

A
=

Vertica 1 Vertica 2 Vertica N

* |\ \ I /

|
I
] g [} I L
availability time 1-3 |/ L0
| = | Legend
. | SQL Repository : I =
Lﬁ ______ \ Database Component
minutes from event ||~ D == S =
. . L_ s |_ | lrﬂicr_os;ate_gy—l : : LAd_mm_Mfuli J{l_ |__I Proprietary Software Component
r t n t | _:.l Intelligence | 1 e | I Componentbased on 31 Party SW
creation to analyslIS L GBS g |
1 1 »L MSTR Web | 1 | Report Finding 1 —>» Invoke / Control / Activate
o o Map Frontend_ | ~—— —— — —» DataFl
- || | ata Flow
|
| Fenoe j ulld_er_I | Layers I_ Mileresiesay () MERWEIAED | e) —» Get/ Set Configuration and Metadata
': E'"_T"i_'"g"ei_eé’j: k MSB Front End] q ﬂ
| Rgesiumapeeaa) | End User
| msscustom engines ! :
Increment Data is ready

Arc GIS Server
_ 4

.°°°°
matrix Dl

Data flow

Geospatial performance test

3 Node cluster and 4TB of Geospatial data

SQL (2014) Oracle (12c) Vertica (7.1) Improvement
(from Oracle)

1 52 Sec 9 Seconds 109 milliseconds 99%
2 6 Sec 3-6 Seconds 94 milliseconds 97%-98%
3 5:30 Min per week 54 Sec Per week 13 Sec Per week (29.5M Records) 76%
4 Over 13 Mins 1:40 to 3:00 Min 16 Sec 84%-89%
5 10 Seconds 13 seconds 300 milliseconds 98%

.°°°°
matrix Dl

Components — DMS Architecture

MSB - (Distributed) Data Movement Services

* Micro batch data loading framework

e Guaranteed delivery!

e Retry and self healing

 High Availability
Multi server architecture I

ETL Instance 1 ETL Instance N

API Reports
Meta Data

Access Layer

!

Vertica

\AAS

Flexibility (Can run Talend / Java / Python
other executables)

|

|

|

|

: Dispatcher
g *

 Platform independent! (Linux \ Windows) Sources

e
o
matrix Dni®g®

Big journeys begin

with small steps

o° °
matrix Dnl X °

Thank You!

ozle@matrixdna.ai

